MICROBIAL MEDIATION OF FLOODPLAIN LANDSCAPE Ecosystem Biogeochemistry

Focus II: Linking Ecosystem Processes to Landscape Patterns

Geoffrey Poole
Montana State University
OVER-ARCHING RESEARCH QUESTION

How do floodplain hydrology and microbially-mediated biogeochemistry interact to influence ecosystem processes in floodplain landscapes?
OVER-ARCHING RESEARCH QUESTION

How do floodplain hydrology and microbially-mediated biogeochemistry interact to influence ecosystem processes in floodplain landscapes?

– Addresses Focus II
– Links to Focus I
– Links to Focus III
OVERVIEW OF APPROACH

• Year I: Organization – identified and refined questions and approaches, team building
• Year II: Infrastructure – software tool development
 – Model development tools
 – Visualization tools
• Year III: Linking to Focus I – field sampling microbial assemblages and associated metabolic pathways
• Year IV: Landscape/ecosystem processes – integrating hydrology and biogeochemistry
• Year V: Linking to Focus III – strategic simplification of modeling approaches.
Collaboration

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Expertise</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geoffrey Poole</td>
<td>Focus II Lead</td>
<td>Fluvial Landscape Ecology</td>
<td>MSU</td>
</tr>
<tr>
<td>Clemente Izurieta</td>
<td>Collaborating PI</td>
<td>Software Engineering</td>
<td>MSU</td>
</tr>
<tr>
<td>Jack Stanford</td>
<td>Collaborating PI</td>
<td>Ecosystems Ecology</td>
<td>UM</td>
</tr>
<tr>
<td>Lucy Marshall</td>
<td>Collaborating PI</td>
<td>Watershed Analysis</td>
<td>MSU</td>
</tr>
<tr>
<td>Tim McDermott</td>
<td>Collaborating PI</td>
<td>Microbial Ecology</td>
<td>MSU</td>
</tr>
<tr>
<td>Ryan Jones</td>
<td>Collaborating PI</td>
<td>Microbial Ecology</td>
<td>MSU</td>
</tr>
<tr>
<td>Robert Payn</td>
<td>Collaborating PI</td>
<td>Watershed Hydrology</td>
<td>MSU</td>
</tr>
<tr>
<td>Isaac Griffith</td>
<td>Ph.D. Student</td>
<td>Software Engineering</td>
<td>MSU</td>
</tr>
<tr>
<td>Renee Cross</td>
<td>Ph.D. Student</td>
<td>Software Engineering</td>
<td>MSU</td>
</tr>
<tr>
<td>Amanda DelVecchia</td>
<td>Ph.D. Student</td>
<td>Ecosystems Ecology</td>
<td>UM</td>
</tr>
<tr>
<td>Rachael Luhr</td>
<td>M.S. Student</td>
<td>Software Engineering</td>
<td>MSU</td>
</tr>
</tbody>
</table>
YEAR II ACTIVITIES

Software development
 – Graphical user interface
 – Uncertainty Quantification Framework
 – Visualization

• Initial field work
 – Research design
 – Sampling

• Outreach
 – “MSU Minute” at Museum of Rockies Taylor Planetarium
FLUX NETWORK MODELING USING "NETWORK EXCHANGE OBJECTS" (NEO)
YEAR II ACTIVITIES

• Software development
 – Graphical user interface
 – Uncertainty Quantification Framework
 – Visualization
• Initial field work
 – Research design
 – Sampling
• Outreach
 – “MSU Minute” at Museum of Rockies Taylor Planetarium
UNCERTAINTY QUANTIFICATION FRAMEWORK
YEAR II ACTIVITIES

- Software development
 - Graphical user interface
 - Uncertainty Quantification Framework
 - Visualization
- Initial field work
 - Research design
 - Sampling
- Outreach
 - “MSU Minute” at Museum of Rockies Taylor Planetarium
INITIAL FIELD SAMPLING

Keenan Brame
YEAR II ACTIVITIES

- Software development
 - Graphical user interface
 - Uncertainty Quantification Framework
 - Visualization
- Initial field work
 - Research design
 - Sampling
- Outreach
 - “MSU Minute” at Museum of Rockies Taylor Planetarium
Acknowledgements

- NSF EPSCoR Track-I EPS-1101342 (INSTEP 3)
- Eric Loberg – Director, Taylor Planetarium
- Evans and Sutherland, Salt Lake City, Utah